
244 NADKARNI AND MILLER, SOA in Medical Software
Editorial Comment �

Service-oriented Architecture in Medical Software: Promises and
Perils

PRAKASH M. NADKARNI, MD, RANDOLPH A. MILLER, MD
� J Am Med Inform Assoc. 2007;14:244–246. DOI 10.1197/jamia.M2349.
In the current issue of JAMIA, Kawamoto and Lobach1

propose a software framework intended to facilitate wide-
spread, effective, clinical decision support. The proposed
framework embraces a service-oriented-architecture (SOA)
approach. Service-oriented-architecture is a philosophy of
design described as “the software equivalent of Lego
bricks,”2 where a toolset of mix-and-match units (“ser-
vices”), each performing a well-defined task, can reside on
different machines (including geographically separated
ones), ready to be used when needed. The most widespread
implementations of SOA involve the use of Web services,
where a given computational resource/service can be in-
voked by a remote machine via messages composed in XML
and sent over HTTP, so that they can operate across fire-
walls. Think of a Web service, in its simplest form, as a
subroutine that can be called over the Internet.

Thanks to success stories such as Amazon.com,3 and at
software giants such as SAP,4,5 the status of SOA in the
business information technology (IT) domain has risen me-
teorically. The Kawamoto and Lobach paper1 reiterates the
following potential benefits of SOA:

• Simpler software design and implementation, by decom-
posing complex problems into smaller, more manageable
ones.

• Improved software reusability through enhanced reuse
of existing IT resources.

• Improved adaptability to changing business require-
ments.

• Cost savings consequent to the above benefits.

Some IT articles, however, present a “caveat emptor” skep-
ticism about SOA.6,7 One must carefully inspect the claimed
benefits of SOA closely, examine its potential drawbacks,
and take a balanced approach to any proposed new SOA
application while taking into consideration past lessons
from business IT.

Affiliations of the authors: Yale Center for Medical Informatics, Yale
University School of Medicine (PMN), New Haven, CT, and De-
partment of Biomedical Informatics, Vanderbilt University (RAM),
Nashville, TN.

Correspondence and reprints: Randolph A. Miller, MD, Eskind
Biomedical Library-Lower Level, 2209 Garland Avenue, Nashville,

TN 37232-8340; e-mail: �randolph.a.miller@vanderbilt.edu�.
SOA Benefits Analyzed
In software design, simplification through problem decom-
position into semi-independent units (subroutines, classes)
is an important, incontrovertible principle. In SOA, where
the units (services) lead a relatively autonomous existence
(e.g., units are free to reside on physically separate hard-
ware), decomposing a software solution into individual
services makes sense only in two circumstances:

• When a particular service can provide independent value
to the remote caller.

• When physical separation of services on multiple ma-
chines provides quantifiable scalability and performance
benefits through hardware parallelism that more than
offset the extra overhead of intermachine communica-
tion. Typically, the latter economies occur when the
services are used mostly internally, and even then,
achieving scalability may require upgrades to internal
network infrastructure to minimize this overhead. When
a user of Amazon.com asks for information on a book, for
example, several dozen independent services compose
individual parts of the returned Web page, such as
product information, book rank, similar titles, and cus-
tomer reviews.

Newman7 points out that reuse of an existing resource
requires that the resource was designed to be reusable.
Designing, or redesigning, for reusability involves one or
more of the following steps:

• Rigorously examining the assumptions implicit in an
existing resource’s design and determining which of
these do not hold in a different circumstance. For exam-
ple, consider the situation where a service’s output must
eventually be converted into human-readable text, as
with Amazon’s Web pages, or the recommendation sys-
tem for preventive clinical procedures postulated in this
issue’s paper. One issue to be determined is whether the
service should have a transnational reach, so that output
is not restricted to the English language alone. Creating
localizable software (i.e., software that can be adapted for
different cultures without having to completely repro-
gram it) involves, among other things, isolating the
textual elements that are to be shown to the user in
“resource files” and referring to them symbolically.
While software tools to facilitate localization are quite

mature (e.g., Microsoft Visual Studio Team Suite®), re-

Journal of the American Medical Informatics Association Volume 14 Number 2 Mar / Apr 2007 245
working an existing software resource to make it localiz-
able is inherently a painstaking and error-prone task.

• Identifying a general underlying problem amenable to
creation of a general solution.

• Deciding to make something reusable often requires
changing an organization’s business model. Linquist2

cites ProCard, a credit-card service provider whose
strengths resided in its software suite. ProCard deter-
mined that converting its suite into independently acces-
sible services was worthwhile only if it transformed itself
from a competitor of Visa and MasterCard to a provider
of software services to its much larger rivals.

• Deciding whether the extra effort needed to re-engineer
and/or generalize the solution is justified in the present
situation, given constraints such as urgency and limited
developer resources.

The caveats here are that, as in great architecture and
literature, simplicity is an elusive entity whose achievement
is as much art as science: that is why it is so uncommon.
Regarding reusability, Newman7 estimates that it generally
takes at least three iterations to design a reusable software
unit (class, library, service) well. Individuals capable of
abstracting problems and devising elegant, simple, and
general solutions tend to be both rare and expensive.

It might be more accurate to state that SOA is a strategic,
long-term objective rather than a tactical, short-term one. As
with other system design approaches—e.g., metadata-
driven software architectures—developers must invest a
significant amount of effort in framework-building, which
takes time, resources, and human expertise, before antici-
pated payoffs in reduced costs and greater adaptability are
realized. For both Amazon and SAP, the time investment
was at least four years.

The Issue of Standards
For a service that can provide independent value, the need
to adhere to existing standards (when the service may be
called from outside the organization, and must be interop-
erable with services designed by others) often necessitates
extra effort that would not otherwise be required. Here the
challenges concern the semantics of the data that must be
passed to and from the service and how it must be repre-
sented, rather than the nature of the XML plumbing: modern
software development environments mostly shield you
from the latter and allow you to concentrate on the former.

While the paper by Kawamoto and Lobach emphasizes the
use of a standard, the HL7 Service Functional Model (SFM)
Specification for Decision Support Service8 we note that this
standard is in its early stages, with version 0.85 posted June
19, 2006 and version 1.0 posted July 23, 2006. In addition, we
note that Dr. Kawamoto is a member of the HL7 SOA SIG,
and was project leader on the HL7 Decision Support Service
effort. Considerable experience will be needed to determine
whether the specification is sufficiently comprehensive to
meet its objectives and to what extent it will need to be
revised.

Amazon was fortunate in that they were the sole standards-
setter for the family of services that they offer for external
use. In an area where consensus is not yet present, however,
the lead time required for consensus to be achieved must be

factored in. In the medical domain, where HL7 version 3’s
status is still not official (for reasons that are not entirely
technical but beyond the scope of this editorial), the reasons
and process for implementing SOA must be similar to the
ones in IT elsewhere. That is:

• The case for SOA must be made from a business perspec-
tive.

• The initial implementations of SOA must focus on inter-
nal use (where the services are used primarily over the
organization’s Intranet) so that one can worry less about
nascent and immature standards and focus on solving
specific problems.

• SOA must be understood to be a long-term, strategic
approach that is not always applicable. In particular, as
stated in Lindquist,2 if the reusability quotient of a given
problem is low, a “one-off” non-SOA solution turns out
to be more direct and faster to create.

Service Discovery: Theory and Reality
The paper by Kawamoto and Lobach1 mentions “service
discovery” as one of the aspects of SOA. The idea of service
discovery is that a service contains descriptive information
about itself that would allow a remote automated software
agent to determine whether a service exists on the Internet
that would address a particular need. The HL7 specification
discussed above provides for keywords that would assist
the search for a particular service.

While “semantic Web” researchers have made much of the
potential of service discovery, this is currently far removed
from reality. When carefully considered, service discovery is
an extremely difficult problem to solve. If we regard the
collection of biomedical services as a vast Internet-accessible
subroutine library, determining whether a service is appro-
priate for a specific task would require considerable expert
human intervention. Software developers who have to work
with giant development frameworks such as Java® and
Microsoft.NET®, which contain tens of thousands of sub-
routines, have to deal regularly with the same problem in a
non–Web services setting. As often as not, browsing vendor
documentation is insufficient, forcing the developer to use a
Web search engine such as Google® and browse resources
such as developer group forums and blogs.

At present, the large Web service providers simply provide
extensive documentation on each service, which also in-
cludes programming examples as well as case histories of
successful use. The best service providers continually solicit
feedback on the quality of their documentation in order to
improve it.

The Issue of Medical Errors and Adverse Effects
Clinicians, health care organizations, consumer groups, and
informatics developers regard clinical decision support as a
key method to address the inefficiencies and errors docu-
mented to occur in busy clinical practices.9,10 However,
many health care organizations now see decision support as
a selective means to provide better care to their patients in a
manner that distinguishes them from their competitors. For
the reasons listed above, SOA within a local environment
may greatly facilitate such clinical decision support. How-
ever, there are potentially severe concerns if an organization
“outsources” its decision support to potentially imperfect

external agencies.

246 NADKARNI AND MILLER, SOA in Medical Software
The manner in which SOA is implemented, as noted by
Kawamoto and Lobach, is as a series of “black boxes” that,
given an input, produce an output. In general, SOA services
are not “licensed practitioners,” so that legally, the patient’s
health care provider (clinician or institution) is responsible
for overriding any erroneous advice provided by an SOA
service. The latter circumstances may in and of themselves
inhibit reliance on external clinical SOA services.

If one were to ask a commercial software vendor, a pharma-
ceutical company, or a health care-related agency to provide
a “medication dosing service” at a regional or national level,
who would trust the service to provide uniformly correct
answers? If a hypothetical SOA medication dosing service
only took age into consideration, and not weight, it could
not be used in pediatrics or for dosing certain medications,
such as aminoglycoside antibiotics, in adults. Even if a
dosing service took weight and age into consideration, but
not gestational age or height, it still could not be used for
neonatal applications or for situations in which doses are
based on body surface area (e.g., chemotherapy). Dosing
also depends on renal and hepatic function. Finally, dosing
is often diagnosis-dependent. The same adult patient, at a
given age, weight, height, and level of renal function, would
require far higher doses of a “correct” beta lactam antibiotic
when treating bacterial endocarditis in an inpatient setting
than would be required to treat that patient’s community-
acquired pneumonia in an outpatient setting. How much
information would a “medication dosing service” require as
input in order to give proper advice in all settings, and how
complex would the output have to be to cover a myriad of
potential patient characteristics? In the best commercial
drug databases on the market today, the algorithmic and
data-structure sophistication for such a dosing service does
not yet exist; the best that these systems do is reproduce the
medication vendor’s package insert text. Converting such an
existing imperfect solution to a Web service would not be
satisfactory.

The logistics of responsibly implementing long-distance
clinical SOA services may be overwhelming. The “black
box” model for SOA services assumes relatively minimal
input and output. Consider, however, the circumstance
whereby the maintainers of a regional or national SOA
clinical decision support service discover that the advice
provided by the service has been faulty over the past 24
hours due to a “bug” introduced into the software (or the
knowledge base) of the service. What mechanisms would
exist that would enable the SOA provider to contact all care
providers who had relied upon the service to provide advice
for patients, and to then determine which patients’ ordered
regimens would need to be changed? To do so would
require an “SOA transaction identifier” that at least goes
back to identifying the institution requesting the service, and

possibly even to the level of identifying the patient (at the
SOA level). This raises the possibility whereby enough
information about a patient must be transmitted to an SOA
service to obtain advice that HIPAA privacy rules are
violated.

The Issue of Commercialization
If SOA services are vended commercially (as might be the
case in some future scenario involving the authors’ commer-
cialization efforts), one must consider how to charge the
users of the services. Some of Amazon’s services, e.g.,
product data (prices, images, customer reviews), are free,
while other services are priced: e.g., the Historical Pricing
service, which provides access to more than three years of
Amazon’s sales data for any item, has a fee of $249/month
for up to 60,000 requests per month. The legal and ethical
issues related to how such a commercial SOA decision
support system might operate across state, and possibly
national borders, have yet to be addressed in a definitive
and thoughtful manner.

References y

1. Kawamoto K, Lobach D. Proposal for Fulfilling Strategic Objec-
tives of the U.S. Roadmap for National Action on Decision
Support through a Service-Oriented Architecture Leveraging
HL7 Services. J Am Med Inform Assoc. 2007;14:146–155.

2. Lindquist C. A New Blueprint for IT (editorial). CIO Magazine
2005. Available at: http://www.cio.com/archive/081505/soa.
html. Accessed December 6, 2006.

3. Gray J. A conversation with Werner Vogels, CTO, Amazon.com.
Web Services 2006. Available at: http://portal.acm.org/
ft_gateway.cfm?id�1142065&type�pdf. Accessed December 6,
2006.

4. SAP. SAP - Enterprise Service-Oriented Architecture�. 2006;
Available at: http://www.sap.com/platform/esa/index.epx.
Accessed December 2, 2006.

5. Campbell S, Mohun V. Mastering Enterprise SOA with SAP
NetWeaver and mySAP ERP. New York: Wiley; 2006.

6. Bakker B. The reality of SOA Caveat Emptor. iWeek 2006 Aug
31, 2006 Available at: http://www.iweek.co.za/ViewStory
.asp?StoryID�165822. Accessed December 2, 2006.

7. Newman J. SOA, Reuse, Caveat Emptor. 2004; Available at:
http://integralpath.blogs.com/thinkingoutloud/2004/11/
soa_reuse_cavea.html. Accessed December 5, 2006

8. Kawamoto K, Esler B. Clinical Decision Support TC and
Service Oriented Architecture SIG: Service Functional Model
Specification, Decision Support Services: Version 1.3, June 19,
2006. 2006. Available at: http://hssp-dss.wikispaces.com/
space/showimage/HL7�Decision�Support�Service�(DSS)�
Service�Functional�Model�(SFM),�v0.85.doc. Accessed
December 10, 2006.

9. Kohn LT, Corrigan JM, Donaldson M, eds. To Err Is Human:
Building a Safer Health System. Washington, DC: Institute of
Medicine; 1999.

10. The Leapfrog Group. Computer Physician Order Entry. 2006.
Available at http://www.leapfroggroup.org/for_hospitals/

leapfrog_safety_practices/cpoe. Accessed December 2, 2006.

http://www.cio.com/archive/081505/soa.html
http://www.cio.com/archive/081505/soa.html
http://portal.acm.org/ft_gateway.cfm?id=1142065%26type=pdf
http://portal.acm.org/ft_gateway.cfm?id=1142065%26type=pdf
http://www.sap.com/platform/esa/index.epx
http://www.sap.com/platform/esa/index.epx
http://www.sap.com/platform/esa/index.epx
http://integralpath.blogs.com/thinkingoutloud/2004/11/soa_reuse_cavea.html
http://integralpath.blogs.com/thinkingoutloud/2004/11/soa_reuse_cavea.html
http://integralpath.blogs.com/thinkingoutloud/2004/11/soa_reuse_cavea.html
http://hssp-dss.wikispaces.com/space/showimage/HL7+Decision+Support+Service+(DSS)+Service+Functional+Model+(SFM),+v0.85.doc
http://hssp-dss.wikispaces.com/space/showimage/HL7+Decision+Support+Service+(DSS)+Service+Functional+Model+(SFM),+v0.85.doc
http://hssp-dss.wikispaces.com/space/showimage/HL7+Decision+Support+Service+(DSS)+Service+Functional+Model+(SFM),+v0.85.doc

